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1 Preliminaries

The objective in these lectures is to look a some of the more classic papers that are aimed at

detecting bid rigging of some form or another (or at least those that I see being cited most often).

It is not a complete list, but rather is designed to give you a sense of the types of approaches that

are floating about in the literature.

There are three papers I want to examine, in varying degrees of detail:

• Porter and Zona (1993), Detection of Bid Rigging in Procurement Auctions, J.P.E. 101(3)

518

• Bajari and Yi (2003), Deciding between Competition and Collusion, ReStat 85(4) 971

• Athey, Levin, Seira (2011), Comparing Open and Sealed Bid Auctions: Evidence from Timber

Auctions, Quarterly Journal of Economics 126, 207

The first two might reasonably be thought of as reduced form (at least as far as the detection

parts). The last is an example of a structural approach.

Before delving into details of the papers, it’s worth being upfront about my attitude to the

detection literature: mostly, I feel people overstate it’s potential usefulness. That is, it can be

useful, but in somewhat more specific settings than folks normally claim. In this sense I am in full

agreement with the following sentiment, from the introduction to Porter and Zona:
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indictments in highway construction, the distribution of school milk, 
utility procurement, and other auction markets. Typically, a govern- 
ment agency, and hence the taxpayer, was the victim. 

This paper proposes econometric test procedures that are designed 
to detect the presence of bid rigging in procurement auctions.' Our 
tests will be poor substitutes for a wiretap or a disclosure by a dissident 
ring member. However, our procedures may be preferable to the 
view that patterns of bid rotation, or relatively constant market 
shares, constitute irrefutable evidence of collusion. Rotating bids are 
consistent with competitive equilibria when there are decreasing re- 
turns to scale, such as when there are capacity constraints, as Zona 
(1986) demonstrates. Lang and Rosenthal (1991) show that the non- 
cooperative mixed-strategy equilibrium of a multiproject bidding 
game, in which firms simultaneously compete for several contracts, 
may entail negative correlation between a firm's bids, or an apparent 
bid rotation pattern. Similarly, comparisons of winning bids and engi- 
neers' estimates of costs, which attempt to measure economic returns, 
may be unreliable. Engineers' estimates may be unduly influenced by 
historical bid patterns and so may be an inflated measure of true 
costs. 

In general, finding a single test procedure to detect bid rigging is 
an impossible goal. As in most tests for the exercise of market power, 
the idea is to identify differences between the observable implications 
of collusive and competitive behavior. The difficulty is that both com- 
petitive and collusive equilibria depend, to a great extent, on the 
economic environment, such as the auction rules and the nature of 
the good being traded. As Hendricks and Porter (1989) argue, collu- 
sion in auctions can take many forms, and it is important to tailor 
empirical work to specific cases. For example, a cartel might adopt a 
pure bid rotation scheme in which members take turns submitting 
bids in individual auctions (according to a "phases of the moon" 
scheme, for example). Alternatively, cartel members in addition to 
the designated winner may submit higher complementary or frivo- 
lous bids, perhaps to create the appearance of competition. It is un- 
likely that any single test procedure could detect all collusive schemes 
without data on economic returns (in which case effective collusion 
might be detected by the presence of persistently high profits). As a 
consequence, structural modeling and estimation are difficult without 
more detailed information. In environments in which complementary 
bids are submitted, structural modeling may be impossible because it 

1 Accordingly, we refer to the intended victim as the buyer, and the bidding ring is 
a subset of the potential sellers. The effect of the ring, then, is to inflate the price paid 
by the buyer. 
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So, with that preliminary comment, lets examine Porter and Zona
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2 Porter and Zona (1993), Detection of Bid Rigging in Procure-

ment Auctions, J.P.E. 101(3) 518

The paper has three types of section:

1. Institutional detail

2. model and resulting reduced form empirics

3. data analysis

Lets go through each in turn.

2.1 Institutional Setup

• NY DOT procures roadwork (specifically paving jobs)

• Details of what is needed on each job available from DOT for purchase

• ‘Plan Buyers List’ can be purchased from DOT - also distributed to subscribers. This lists

all firms buying plans on each job offered

• FPSB auctions - lowest price wins

• After auction, DOT announces all bids and who won contract.

• $120 million in Nassau and Suffock county between 1979 and 1985 contracted by DOT. 186

Contracts in total. 116 paving contracts, 575 bids on these paving contracts. 75 contracts

had 2 or more bids. A small number of bidders dominate the bidding, especially as projects

get bigger, so that competition for jobs if really among a fairly small set of firms.

• 1 large firm is prosecuted on a project predating the data. The proscution occrs in 1984. 4

other firms are named in the indictment, but not prosected. These five firms are “CARTEL”

firms. They account for 54% of bids on large projects.

• Hence the research question is something like “Was this an isolated event?”

• Why might systemic collusion be plausible in this market?

1. competition is only on price

2. DOT annouces a lot of info

3



3. DOT does not appear at all strategic (i.e. almost never rejects a winning bid)

4. Set of dominant firms appears small

5. suggestion of high barriers to entry. Usual type of capital equipment stroy but also this

interesting story about the labor unions:
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tion to member firms. A cartel should face less uncertainty, and there- 
fore perhaps be more stable, in such an environment. 

During the sample period, the DOT exhibited almost perfectly in- 
elastic demand. Although the state sets an overall budget for the 
DOT based on requests from the department, demand is largely ex- 
ogenous. With one notable exception,4 every contract was ultimately 
awarded to the low bidder, regardless of the DOT estimate of the 
cost. As a result, any inflation of winning bids due to collusion would 
be completely captured as profits. Of course, successful collusion may 
result in fewer lettings in the future. 

The set of firms submitting bids on large projects was small and 
fairly stable over the period analyzed, even though the DOT actively 
recruited New York City firms for work in Nassau and Suffolk coun- 
ties. Entry would have been difficult because of large transportation 
costs (the batch concrete and asphalt plants employed on large jobs 
are typically owned by the bidder) and control of local facilities by 
the incumbent firms. In addition, union locals could have exerted 
significant control over production.5 There may have been significant 
barriers to entry, and there was little entry in a growing market. 

As described above, the market for large jobs was highly concen- 
trated. Only 22 firms submitted bids on jobs over $1 million. On the 
25 largest jobs, 45 percent of the 76 bids were submitted by the four 
largest firms. Most of the remainder came from smaller firms that 
bid infrequently. In our sample of paving jobs, 575 bids were submit- 
ted on 116 lettings. Sixteen firms bid on jobs of $1 million or more. Of 
the 79 bids on the 25 largest pavingjobs, ranging from approximately 
$940,000 to $8 million, 46 percent were submitted by the four largest 

4 According to our data, in February 1983 the DOT solicited bids on a contract for 
resurfacing 0.8 miles of road. Eight bids were submitted, and the lowest bid was about 
$4 million. The DOT decided not to award the contract because the bid was unusually 
high relative to its own estimate of the cost. The contract was again put out to bid in 
May 1983. This time four bids were submitted, three by firms that had submitted a 
bid previously and a fourth by a new firm. The low bid was 20 percent higher and was 
submitted by the previous low bidder. Again, the contract was not awarded. The 
contract was put out to bid a third time, in February 1984, and this time three bids 
were submitted. All three firms had bid in both previous sales. The low bid was about 
10 percent higher than the previous low bid and about 30 percent higher than the low 
bid in the initial letting. It is notable that the same firm submitted the low bid in each 
of the auctions. Because of the unusual bidding patterns, the contract was not awarded 
through 1987. 

5 According to an article published in Newsday, insiders say that leaders of the two 
most powerful construction unions on Long Island discouraged outside bidders by 
threatening future labor trouble. At least one of the unions covered the entire metro- 
politan area. Thus when word spread that particular firms had "the inside track on 
large public bids on the Island and the unions wanted it that way . .. very few people 
missed the message" (November 18, 1984, pp. 3, 30). 
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6. bidders active in local trade associations (also I vaguely recall that there was a mafia

angle)

7. RFQ’s are somewhat sequential

• So the suspected conduct is that they coordinate on a low bid and the others in the cartel

submitt phantom bids. See below:

526 JOURNAL OF POLITICAL ECONOMY 

TABLE 1 
JOINT BIDS BY CARTEL FIRMS 

Value of 
Firms Date Winning Bid 

1, 3 February 1980 $5,300,000 
2, 5 June 1980 $7,300,000 
2, 5 January 1982 $4,000,000 
2, 3, 6 November 1984 $8,000,000 

with our data. The cartel firms regularly bid "against" each other. 
Table 2 shows the number of occasions on which one of the firms in 
the group bid against another in settings of contracts involving pav- 
ing. Joint bids were excluded from our data set. For example, table 
2 indicates that on the 48 occasions in which firm 1 submitted a bid, 
37 bids were also submitted by firm 2. At least one firm in the candi- 
date cartel submitted an individual bid on all but two of the large 
jobs in our data. 

Table 3 shows the probability of multiple cartel bids on paving and 
nonpaying jobs, given that at least one cartel firm bids on a job. For 
example, at least one other cartel firm bid on a paving job 88 percent 
of the times when firm 1 bid. Every time firm 5 bid on a paving job, 
another cartel firm did as well. The probability that cartel firms bid 
against each other on nonpaying jobs is slightly lower, as demon- 
strated by the lower percentages reported in column 2 of table 3. 

In addition to the evidence from the bidding data, information 
obtained from insiders suggests that a phantom bidding scheme was 
employed by these firms. These sources describe the process. "We all 
sat at the conference table . . . one of the contractors would have a 
list of upcoming contracts . . . they'd talk about the contract . .. how 
much money . . . who won the last one . . . who should get this 
one . . . . The contractors who were tagged to be the low bidders 
would work out their bid figures .... The rest of the contractors 
would then come up with higher bids" (Newsday [November 18, 1984], 

TABLE 2 
SIMULTANEOUS BIDS BY CARTEL FIRMS ON PAVING JOBS 

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5 

Firm 1 48 37 34 1 11 
Firm 2 37 86 56 1 15 
Firm 3 34 56 71 2 14 
Firm 4 1 1 2 3 1 
Firm5 11 15 14 1 20 
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2.2 Model

The model part is pretty simple, but also very neat. As usual they posit the standard FPSB bidding

function

Pr(win|b) + (b− c)∂Pr(win|b)
∂b

= 0

Then they posit that bidding as a function of observed covariates is (i indicates bidder, t is

auction)

log(bit) = αt + βXit + εit
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where εit is interpreted as private information, with expectation zero and variance σ2t . No-

tice how close this is to how the structural auction literature tends to handle observed auction

heterogeneity.1

Estimation is via GLS (i.e. conditional homoskedasticity (more precisely the spherical error

assumption) is violated since the variance is auction specific). This ends model number 1.

The second model is what this paper is known for. The idea is to look at the ranking of bids

and see if the ranking can be predicted and if the patterns appear stable across subsets of the data.

The idea is that this should be so if bids reflects actual economic factors (e.g. distance to job), that

is, if they are competitive. If bids are phantom, then this need not be true.

Let εit be distributed IID Type 1 extreme value distribution. This gives a logit structure. Hence

lnPr(bit < bjt∀j 6= i) = αt + βZit

(Zit is an adjustment of the X’s by the inferred variance of the εit from the GLS estimator

above). The more familiar expression is:

Pr(bit < bjt∀j 6= i) =
eβZit∑
j e

βZjt

This allows us to construct the likelihood of any sequence of ranks, just by multiplying the

probability of the each bid being lower than the ones above it. Then for all actions, we multiply

again. So (with a little abuse of notation) the likelihood for the data is

L(β) =
∏
t

∏
i

eβZit∑
j>i e

βZjt

Note that this can be estimated using any subset of the data. That is, independence is doing a

bunch of work, but is very helpful (what if this were a environment where dynamics were important,

but not well observed by the econometrician?)

The idea will be to compare estimates from subsets of data, and see if they are consistent. What

is done, is to look at the model for the low bidders, and then compare it to the model for all other

other rankings. The test is done using a likelihood ratio test due to Hausman and Ruud 1987.

2.3 Data Analysis

Variables are:

• BACKLOG: sum of dollars of jobs contracted for in last 3 months but not completed

1Also, note that unobserved auction heterogeneity is largely ignored, although a random effects estimator could

have been used. That said, it would have made the rank order stuff (to follow) a lot harder to merge in.
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• CAP: capacity measured as the max of BACKLOG observed in sample period for that firm

• UTIL: utilization rate which is BACKLOG/CAP

• UTILSQ: this is the square of UTIL

• ISLAND: = 1 if headquartered on long island

• NOBACK: =1 if never won a project

The first regression is the GLS of bid on stuff

534 JOURNAL OF POLITICAL ECONOMY 

The dependent variable in the least-squares regressions is BID. 
the logarithm of the bid of firm i on job t (bids are expressed in 
hundreds of thousands of constant 1969 dollars). The mean competi- 
tive bid was $450,000, and the mean cartel bid was $713,000. 

V. Results and Interpretation 

Analysis of Bid Levels 

The results of GLS estimation using bid data for all paving jobs are 
given in table 4. (Absolute values of estimated t-statistics are reported 
below the parameter estimates.) We report estimation results using 
three subsets of data: bids from all firms, bids from competitive firms, 
and bids from cartel firms only. In all three cases, the same auction- 
specific variance weights, derived from competitive bids, were em- 
ployed. In addition, auction-specific constants are estimated but not 
reported. If all bids are in fact competitive, all three estimate the 
same underlying parameters. If cartel bids are not competitive, then 
the model is misspecified, and only those based on competitive bids 
are consistent. 

In general, the competitive model fits well, and the estimates have 
the expected sign. Long Island firms bid about 3 percent lower than 

TABLE 4 

GLS ESTIMATES 

Data from 
Data from All Competitive Data from 

Firms Firms Cartel Firms 
(1) (2) (3) 

Observations 476 319 157 
Degrees of freedom 395 238 81 
Wald statistic 21.9 494.7 28.4 
UTIL -.0053 -.0973 .1991 

(.2) (2.8) (1.2) 
UTILSQ .0358 .1720 -.1143 

(1.0) (4.0) (.8) 
NOBACK -.0010 -.0178 

(.1) (1.6) 
CAP .1666 -1.2691 1.8225 

(1.8) (10.4) (4.6) 
CAPSQ -.4430 4.8519 -2.9029 

(2.1) (13.0) (4.4) 
ISLAND -.0288 -.0334 

(.6) (1.2) 

NOTE.-Absolute values of t-statistics are displayed in parentheses. Auction-specific constants were included but 
are not reported to save space. The Wald statistics pertain to a test of the joint significance of the reported 
coefficients. The coefficients of CAP and CAPSQ are scaled up by 104 and 108, respectively. 
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This is a bit opaque so Porter and Zona give economic magnitudes. When UTIL = 1 (running

at full capacity) bids go up by 7.5% if a firm is competitive, being on L.I. gives a bid advantage of

about 3%. Cartel firms look different and turn out to be statistically different.

The next two regressions examine the ranks.
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TABLE 5 

COMPETITIVE RANK BASED ESTIMATES 

All Ranks Low Ranks Higher Ranks 
(1) (2) (3) 

Observations 244 75 169 
Log likelihood -291.4 -89.85 -199.4 
UTIL -.0070 .0161 -.0552 

(.1) (.1) (.3) 
UTILSQ .0986 .0534 .1596 

(.8) (.3) (1.0) 
NOBACK -.0283 .0089 -.0454 

(1.0) (.2) (1.3) 
CAP -1.888 -1.641 -2.100 

(3.8) (2.4) (3.0) 
CAPSQ 6.869 6.517 7.020 

(3.9) (2.6) (2.9) 
ISLAND -.0182 -.0759 .1016 

(.3) (.9) (-9) 

NOTE.-Absolute values of t-statistics are displayed in parentheses. The coefficients of CAP and CAPSQ are 
scaled up by 104 and 108, respectively. 

(Essentially, only pairwise differences are considered.) Column 2 dis- 
plays the estimates for the determinants of the identity of the lowest 
bidder among the set of competitive firms submitting a bid. Column 
3 corresponds to the ranking among the remaining bidders, exclud- 
ing the lowest. The estimates in column 1 are derived from the likeli- 
hood function for the entire rank distribution. The estimates are 
stable over ranks. The likelihood ratio test statistic of coefficient stabil- 
ity across ranks is 4.3, which is distributed as a x2 random variable 
with six degrees of freedom under the null hypothesis. The test statis- 
tic is significant at about the 36 percent level, and therefore, we can- 
not reject the null hypothesis of no model misspecification. We cannot 
conclude that competitive bids are generated by a different process 
depending on whether or not they are low. 

Analysis of Cartel Bid Rank Data 

Estimates from the MNL model using cartel data are presented in 
table 6. The criterion for dividing the cartel data into low and higher 
ranks is the same as that for the competitive data. The number of 
observations is less than in table 4 because attention is restricted to 
the 50 auctions receiving two or more cartel bids. The estimated 
coefficients are similar to the GLS estimates for the cartel data pre- 
sented in table 4 and differ from all the competitive estimates. The 
likelihood ratio test statistic of parameter stability across ranks is 8.94, 
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TABLE 6 

CARTEL RANK BASED ESTIMATES 

All Ranks Low Ranks Higher Ranks 
(1) (2) (3) 

Observations 85 50 35 
Log likelihood - 73.97 -44.58 - 24.92 
UTIL .0429 .2107 .2310 

(.3) (1.0) (.6) 
UTILSQ -.0112 -.1128 -.4300 

(.1) (.6) (.9) 
CAP .4306 1.101 -2.537 

(.9) (1.3) (1.6) 
CAPSQ -.8473 -1.904 3.861 

(.9) (1.2) (1.4) 

NOTE.-Absolute values of t-statistics are displayed in parentheses. The coefficients of CAP and CAPSQ are 
scaled up by 104 and 108, respectively. 

which is distributed as a x2 random variable with four degrees of 
freedom under the null hypothesis. The test statistic is significant at 
about the 94 percent level. Therefore, we reject the null hypothesis 
of no phantom bidding. We conclude that cartel bids are generated 
by a different process depending on whether or not they are low. 

VI. Conclusions 

The idiosyncrasies of the DOT auction market suggest both a candi- 
date cartel and a particular bid-rigging mechanism. We find that the 
ranking of cartel bids does not coincide with rankings of costs. We 
reject the null hypothesis of no phantom bidding in cartel data. The 
bid ranking may not coincide with cost rankings because of the pres- 
ence of phantom bids. In the competitive data, bids increase with 
costs as expected, and we cannot reject the hypothesis of no phantom 
bidding for competitive firms. Because we have no reason to believe 
that the difference between cartel and competitive bidding is struc- 
tural, we may have found evidence of cartel activity. 

Our testing procedure may be conservative in that we may have 
inadvertently classified some cartel participants as competitive. Simi- 
larly, we have access to a relatively sparse set of explanatory variables. 
Therefore, it is perhaps best to view the contribution of this paper 
as methodological as well as descriptive. Unfortunately, if an antitrust 
authority or procurement agency were to publicly announce the 
adoption of our test procedure, it would be relatively easy for an 
effective cartel to tailor its phantom bids to disguise collusive behav- 
ior. For example, all cartel firms could scale their competitive bids up 
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The punchline is that in the cartel setting the lower rank model is statistically different from

the higher ranks. This is not true in the competitive setting.

The main take away from this paper is the idea of using the ranking of bids as a diagnostic,

subject to the following caveats from Rob and Doug:
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TABLE 6 

CARTEL RANK BASED ESTIMATES 

All Ranks Low Ranks Higher Ranks 
(1) (2) (3) 

Observations 85 50 35 
Log likelihood - 73.97 -44.58 - 24.92 
UTIL .0429 .2107 .2310 

(.3) (1.0) (.6) 
UTILSQ -.0112 -.1128 -.4300 

(.1) (.6) (.9) 
CAP .4306 1.101 -2.537 

(.9) (1.3) (1.6) 
CAPSQ -.8473 -1.904 3.861 

(.9) (1.2) (1.4) 

NOTE.-Absolute values of t-statistics are displayed in parentheses. The coefficients of CAP and CAPSQ are 
scaled up by 104 and 108, respectively. 

which is distributed as a x2 random variable with four degrees of 
freedom under the null hypothesis. The test statistic is significant at 
about the 94 percent level. Therefore, we reject the null hypothesis 
of no phantom bidding. We conclude that cartel bids are generated 
by a different process depending on whether or not they are low. 

VI. Conclusions 

The idiosyncrasies of the DOT auction market suggest both a candi- 
date cartel and a particular bid-rigging mechanism. We find that the 
ranking of cartel bids does not coincide with rankings of costs. We 
reject the null hypothesis of no phantom bidding in cartel data. The 
bid ranking may not coincide with cost rankings because of the pres- 
ence of phantom bids. In the competitive data, bids increase with 
costs as expected, and we cannot reject the hypothesis of no phantom 
bidding for competitive firms. Because we have no reason to believe 
that the difference between cartel and competitive bidding is struc- 
tural, we may have found evidence of cartel activity. 

Our testing procedure may be conservative in that we may have 
inadvertently classified some cartel participants as competitive. Simi- 
larly, we have access to a relatively sparse set of explanatory variables. 
Therefore, it is perhaps best to view the contribution of this paper 
as methodological as well as descriptive. Unfortunately, if an antitrust 
authority or procurement agency were to publicly announce the 
adoption of our test procedure, it would be relatively easy for an 
effective cartel to tailor its phantom bids to disguise collusive behav- 
ior. For example, all cartel firms could scale their competitive bids up 
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by the same percentage. The bid ranking would then coincide with 
cost rankings. If the cartel was not inclusive, differences between 
cartel and competitive bidding would be consistent with cost asym- 
metries between the two groups of firms. Presumably, a noninclusive 
cartel is profitable when cartel firms enjoy a cost advantage over com- 
petitive firms. In the absence of prior information on cost differences, 
bidding differences could not be attributed solely to noncompetitive 
bidding. Attention would then have to focus on the determination of 
the identity of the lowest bidder or on rates of return. 
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3 Bajari and Yi (2003), Deciding between Competition and Col-

lusion, ReStat 85(4) 971

Like most of Pat Bajari’s papers this article has a lot of ideas in it. That said, it lacks a little focus,

due (I suspect) to the fact that Pat was looking to collect a bunch of ideas that didn’t make it into

other projects and park them somewhere. As such this is not the easiest paper to pull a punchline

from.

What seems to have gained traction from this paper is the idea of testing for exchangeability

of bids, which we will see is pretty similar to the Porter Zona idea above. Here is the set up:

• Consider an asymmetric IPV auction with N bidders indexed by i

• Let Gi(b|z1, z2, ..., zn) be the distribution of i’s equilibrium bid, where zj are observable char-

acteristics of bidder j. Think of costs as something like ci = α+ β̂zi+εi where the ε is private

information

• Exchangeability says that if π(x) is a one-to-one mapping of {1, 2, ...N} onto itself, then

Gi(b|z1, z2, ..., zn) = Gπ(i)(b|zπ(1), zπ(2), ..., zπ(n))

That is, identity of the bidder should not matter for bid distributions beyond observables.

That is, if bidder 1 has the observables of bidder 2 and vice versa, the G(.) function captures

everything that changes as a result of this permutation.

• Operationally, this means that if we estimate a reduced form bids function such that

bi = γ + βX + βjZj + βkZk + ε

then we should expect βj = βk under the null of exchangeability. So this is what Bajari and

Ye test.

The data are form seal coat road construction projects in MN, ND and SD 1994 -1998 which

equals 495 contracts. There are 11 main firms and a bunch of fringe firms. The variables they see

are:
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15,724, suggesting that bidders leave “money on the table”

due to asymmetric information.

Table 4 summarizes the distribution of the number of bids

per contract. The modal number of bids in this industry is 3,

so taking account of market power will clearly be important.

The owner of the largest �rm in the market, Astech (�rm

2), received a one-year prison sentence for bid rigging in the

mid-1980s. The owners of two other �rms, McLaughlin &

Schulz Inc. (�rm 5) and Allied Paving (�rm 1), were also

�ned for bid rigging with Astech in the seal coat industry.

The owners of all three �rms were, at one time, banned from

bidding for public-sector seal coat contracts.

One important control variable for our analysis will be

the engineer’s estimate. This is a cost estimate formed either

by civil engineers employed by the government or by

consulting engineering �rms. The engineer’s estimate is

supposed to represent a “fair market value” for completion

of the project.15 We found that estimates were available for

139 out of the 441 projects in the data set. Table 5 shows

that the engineer’s estimate is a useful control for project

costs. The normalized winning bid (winning bid divided by

the estimate) is almost exactly 1 and has a standard devia-

tion of 0.1573.

Another generated variable is distance, which we con-

struct using information about both the location of the �rms

and the location of the project.16 For jobs covering several

locations, we use the midpoints of the jobs to do the

calculation. Table 6 summarizes the distances of �rms based

on the rank of their bid, that is, DIST1 is the distance of the

low bidder, DIST2 is the distance of the second lowest

bidder, and so on. Firms with shorter distances from project

locations are more likely to win the job, because they will

have lower transportation costs.

Based on the winning bids and bidding dates, we con-

struct a new variable CAP, which is meant to measure each

�rm’s capacity utilization level. A �rm’s capacity at a

particular bidding time is de�ned as the ratio of the �rm’s

used capacity (measured by the �rm’s total of winning bids

up to that time) to the �rm’s total of winning bids in the

entire season.17

A �nal determinant of �rm i’s success in winning con-

tracts is familiarity with local regulators and local material

suppliers. We summarize the concentration of selected �rms

by state in table 7. Our results suggest that the majority of

the �rms in our data set work primarily in one state. For

instance, �rm 3 is located near the boundaries of Minnesota,

North Dakota, and South Dakota. Yet it does over 70% of its

dollar volume of seal coating in South Dakota. Firm 6 is

located near the Minnesota–South Dakota border, yet it has

won no contracts in South Dakota.

Next, we estimate a set of reduced-form bid functions to

measure the relationship between a number of variables and

the �rms’ observed bidding behavior. The variables we will

use in these regression are as follows:

c BIDi,t: Amount bid by �rm i on project t.
c ESTt: Engineer’s cost estimate for project t.
c DISTi,t: Distance between the location of the �rm and

the project.

c LDISTi,t: log (DISTi,t 1 1.0).

c CAPi,t: Used capacity measure of �rm i on project t.
c MAXPi,t: Maximum percentage free capacity of all

�rms on project t, excluding i.
c MDISTi,t: Minimum of distances of all �rms on project

t, excluding i.15 In conversations with engineers at Minnesota’s, North Dakota’s, and

South Dakota’s Departments of Transportation, the engineers stated that

they formed the estimates by gathering information on materials prices,

prevailing wage rates, and other relevant cost information.
16 The calculation is facilitated by using Yahoo’s map searching engine

http://maps.yahoo.com/ py/ddResults.py. Using city and state’s names as

input for both locations, the engine gives distances automatically. Doing

this manually would be too time-consuming, so we wrote an “electronic

spider” to do the job.

17 The season during which seal coating can take place lasts from late

May to mid-September; in our de�nition, the entire season starts on

September 1 and ends on August 31 of the following calendar year. This

measure of capacity was computed using the entire database of bidding

information, even though in our econometric analysis we will focus on a

subset of these projects.

TABLE 2.—BIDDING ACTIVITIES OF MAIN FIRMS

Firm

ID

No. of

Wins

Avg.

Bid

% Mkt.

Share

No. Bids

Submitted

%

Participation

1 92 82,790 8.2 145 29.3

2 102 191,953 21.1 331 66.9

3 20 363,565 7.8 69 14.0

4 35 241,872 9.1 114 23.0

5 29 283,323 8.9 170 34.3

6 40 77,423 3.3 84 17.0

7 45 62,085 3.0 121 24.4

8 16 87,231 1.5 134 27.1

9 10 237,408 2.6 14 2.8

11 4 328,224 1.4 28 5.7

12 3 317,788 1.0 8 1.6

14 4 754,019 3.2 25 5.1

17 5 1,018,578 5.5 8 1.6

20 13 355,455 5.0 38 7.7

21 2 903,918 1.9 5 1.0

22 2 903,953 2.0 8 1.6

23 2 439,619 1.0 4 0.8

25 3 382,012 1.2 13 2.6

Total 427 87.7

Average bid is the average of all bids that a particular �rm submitted, no. bids submitted is the total

number of bids that the �rm submitted, and % participation is the fraction of seal coat contracts the �rm

bid for.

TABLE 3.—FIRST AND SECOND LOWEST BIDS

Observations Mean Std. Dev. Min. Max.

BID1 466 191,355 227,427 3,893 1,772,168

BID2 466 207,079 244,897 4,679 1,959,928

BID21 466 15,724 29,918 33 352,174

TABLE 4.—BID CONCENTRATION

Number of bids 1 2 3 4 5 6 7

Number of contracts 29 87 190 118 44 22 5
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c LMDISTi,t: log (MDISTi,t 1 1.0).
c CONi,t: Proportion of work done (by dollar volume) by

�rm i in the state where project t is located prior to the
auction.

Summary statistics for these variables are reported in
table 5.

We assume that �rm i’s cost estimate for project t satis�es
the following structural relationship:

ci,t

ESTt
5 c~DISTi,t, CAPi,t, CONi,t, vi, dt, eit!. (26)

Equation (26) implies that �rm i’s cost in auction t can be
written as a function of its distance to the project, its
backlog, the previous experience that �rm i has in this
market (which we proxy for using CONi,t), a �rm i produc-
tivity shock v i, an auction-t-speci�c effect d t, and eit, an
idiosyncratic shock to �rm i that re�ects private information

it will have about its own costs. The results of section II
demonstrate that under certain simplifying assumptions
about dynamic competition, a dynamic model with capacity-
constrained bidders is equivalent to a static model where a
�rm’s cost is ci 1 ViL(s) 2 ViW(s): a sum of current project
costs ci plus a term ViL(s) 2 ViW(s) that captures the option
value of keeping free capacity. In practice, the measure of
backlog CAPi,t will be a good proxy for ViL(s) 2 ViW(s).
Mapping the structural cost function back to the framework
of section IV implies that zi 5 (DISTi,t, CAPi,t, CONi,t, v i, d t).

Firm i’s bid function should depend on the entire param-
eter vector z 5 ( z1, . . . , zN). However, given the limited
number of data points in our sample, it will not be possible
to model the bid functions in a completely �exible fashion,
because z is a vector with many elements. We choose to
include a �rm’s own distance, capacity, and concentration.
From our conversations with �rms that actually bid in these
auctions, we believe that the most important characteristics
of the other �rms to include in the reduced-form bid func-
tion are the location of the closest competitor and the
backlog of the competitor that has the most free capacity.
Also, we computed and simulated the equilibrium of the
asymmetric auction model, using the techniques developed
by Bajari (2001). These simulations also suggest a similar
speci�cation is appropriate. To control for d t, we use �xed
effects for the auction, and to control for vi, we use �rm
�xed effects for the largest 11 �rms in the market. We are
able to identify both our auction �xed effect and �rm �xed
effects because we do not use �xed effects for all of the
�rms. This implies that �rms that are not the 11 largest have
an identical productivity shock v i, which is probably not an
unrealistic assumption in this industry.

Since there are 138 auctions, 11 main �rms, and one pooled
group of nonmain �rms in our restricted data set, we have 137
auction dummies and 11 �rm dummies.18 The set of regressors
thus contains a constant (C), 148 dummy variables, own
distance (DISTi,t), own capacity (CAPi,t), maximal free capacity

18 One auction with an abnormal bid was removed from our data set.

TABLE 5.—SUMMARY STATISTICS

Variable No. Obs. Mean Std. Dev. Min. Max.

Winning bid 441 175,000 210,000 3893 1,732,500
Markup: [(winning bid) 2 estimate]/estimate 139 0.0031 0.1573 20.3338 0.5421
Normalized bid: winning bid/estimate 139 1.0031 0.1573 0.6662 1.5421
Money on the table: (2nd bid) 2 (1st bid) 134 15,748 19,241 209 103,481
Normalized money on the table: [1st bid) 2 (2nd bid]/est. 134 0.0776 0.0888 0.0014 0.5099
Number of bidders 139 3.280 1.0357 1 6
Distance of winning �rm 134 188.67 141.51 0 584.2
Distance of second lowest bidder 134 213.75 152.01 0 555
Capacity of winning bidder 131 0.3376 0.3160 0 0.9597
Capacity of second lowest bidder 131 0.4326 0.3435 0 1
All bids (normalized) 450 1.0819 0.1837 0.6662 1.8347
Distances (LDIST) 450 4.9315 1.1299 0.0000 6.4593
Capacities (CAP) 450 0.4172 0.3573 0.0000 1.0000
Maximal capacities among rivals (MAXP) 450 0.7915 0.3048 0.0000 1.0000
Minimal distance among rivals (LMDIST) 450 4.5679 1.3081 0.0000 9.2104
Job Concentration (CON) 450 0.5967 0.3601 0.0000 1.0000

TABLE 6.—DISTANCES (IN MILES)

Mean Min Max Mean Min Max

DIST1 122.3 0 584.2 DIST5 160.3 13 555.2
DIST2 151.9 0 585.2 DIST6 177.9 63 484.4
DIST3 177.9 0 637.6 DIST7 91 44 128.9
DIST4 166.4 11.2 608.6

TABLE 7.—CONCENTRATION OF FIRM ACTIVITY BY STATE

Concentration

Firm MN ND SD

1 1 0 0
2 0.2781 0.7218 0
3 0 0.2377 0.7623
4 0 1 0
5 0.1246 0.5338 0.3414
6 0.8195 0.1804 0
7 0.9572 0.0427 0
8 0.7290 0.2709 0

11 0 0 1
14 0 1 0
20 0 1 0
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And the summary stats are:

c LMDISTi,t: log (MDISTi,t 1 1.0).
c CONi,t: Proportion of work done (by dollar volume) by

�rm i in the state where project t is located prior to the
auction.

Summary statistics for these variables are reported in
table 5.

We assume that �rm i’s cost estimate for project t satis�es
the following structural relationship:

ci,t

ESTt
5 c~DISTi,t, CAPi,t, CONi,t, vi, dt, eit!. (26)

Equation (26) implies that �rm i’s cost in auction t can be
written as a function of its distance to the project, its
backlog, the previous experience that �rm i has in this
market (which we proxy for using CONi,t), a �rm i produc-
tivity shock v i, an auction-t-speci�c effect d t, and eit, an
idiosyncratic shock to �rm i that re�ects private information

it will have about its own costs. The results of section II
demonstrate that under certain simplifying assumptions
about dynamic competition, a dynamic model with capacity-
constrained bidders is equivalent to a static model where a
�rm’s cost is ci 1 ViL(s) 2 ViW(s): a sum of current project
costs ci plus a term ViL(s) 2 ViW(s) that captures the option
value of keeping free capacity. In practice, the measure of
backlog CAPi,t will be a good proxy for ViL(s) 2 ViW(s).
Mapping the structural cost function back to the framework
of section IV implies that zi 5 (DISTi,t, CAPi,t, CONi,t, v i, d t).

Firm i’s bid function should depend on the entire param-
eter vector z 5 ( z1, . . . , zN). However, given the limited
number of data points in our sample, it will not be possible
to model the bid functions in a completely �exible fashion,
because z is a vector with many elements. We choose to
include a �rm’s own distance, capacity, and concentration.
From our conversations with �rms that actually bid in these
auctions, we believe that the most important characteristics
of the other �rms to include in the reduced-form bid func-
tion are the location of the closest competitor and the
backlog of the competitor that has the most free capacity.
Also, we computed and simulated the equilibrium of the
asymmetric auction model, using the techniques developed
by Bajari (2001). These simulations also suggest a similar
speci�cation is appropriate. To control for d t, we use �xed
effects for the auction, and to control for vi, we use �rm
�xed effects for the largest 11 �rms in the market. We are
able to identify both our auction �xed effect and �rm �xed
effects because we do not use �xed effects for all of the
�rms. This implies that �rms that are not the 11 largest have
an identical productivity shock v i, which is probably not an
unrealistic assumption in this industry.

Since there are 138 auctions, 11 main �rms, and one pooled
group of nonmain �rms in our restricted data set, we have 137
auction dummies and 11 �rm dummies.18 The set of regressors
thus contains a constant (C), 148 dummy variables, own
distance (DISTi,t), own capacity (CAPi,t), maximal free capacity

18 One auction with an abnormal bid was removed from our data set.

TABLE 5.—SUMMARY STATISTICS

Variable No. Obs. Mean Std. Dev. Min. Max.

Winning bid 441 175,000 210,000 3893 1,732,500
Markup: [(winning bid) 2 estimate]/estimate 139 0.0031 0.1573 20.3338 0.5421
Normalized bid: winning bid/estimate 139 1.0031 0.1573 0.6662 1.5421
Money on the table: (2nd bid) 2 (1st bid) 134 15,748 19,241 209 103,481
Normalized money on the table: [1st bid) 2 (2nd bid]/est. 134 0.0776 0.0888 0.0014 0.5099
Number of bidders 139 3.280 1.0357 1 6
Distance of winning �rm 134 188.67 141.51 0 584.2
Distance of second lowest bidder 134 213.75 152.01 0 555
Capacity of winning bidder 131 0.3376 0.3160 0 0.9597
Capacity of second lowest bidder 131 0.4326 0.3435 0 1
All bids (normalized) 450 1.0819 0.1837 0.6662 1.8347
Distances (LDIST) 450 4.9315 1.1299 0.0000 6.4593
Capacities (CAP) 450 0.4172 0.3573 0.0000 1.0000
Maximal capacities among rivals (MAXP) 450 0.7915 0.3048 0.0000 1.0000
Minimal distance among rivals (LMDIST) 450 4.5679 1.3081 0.0000 9.2104
Job Concentration (CON) 450 0.5967 0.3601 0.0000 1.0000

TABLE 6.—DISTANCES (IN MILES)

Mean Min Max Mean Min Max

DIST1 122.3 0 584.2 DIST5 160.3 13 555.2
DIST2 151.9 0 585.2 DIST6 177.9 63 484.4
DIST3 177.9 0 637.6 DIST7 91 44 128.9
DIST4 166.4 11.2 608.6

TABLE 7.—CONCENTRATION OF FIRM ACTIVITY BY STATE

Concentration

Firm MN ND SD

1 1 0 0
2 0.2781 0.7218 0
3 0 0.2377 0.7623
4 0 1 0
5 0.1246 0.5338 0.3414
6 0.8195 0.1804 0
7 0.9572 0.0427 0
8 0.7290 0.2709 0

11 0 0 1
14 0 1 0
20 0 1 0
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The regression equations are:

among competitors (MAXPi,t), minimal distance among com-
petitors (MINDISTi,t), and the job concentration variable (CONi,t).
To take care of the heteroskedasticity problem, we take the
ratio of the bid and the value (the engineer’s estimate) as the
dependent variable (BIDi,t /ESTt):

BIDi,t

ESTt

5 b0 1 b1 LDISTi,t 1 b2 CAPi,t 1 b3 MAXPi,t

1b4 LMDISTi,t 1 b5 CONi,t 1 eit.
(27)

The results from the regression, estimated using ordinary
least squares, are displayed in table 8.

The results from our reduced-form bid function are con-
sistent with basic economic intuition. Firm i’s bid is an
increasing function of �rm i’s distance from the project site
and �rm i’s capacity utilization. As �rm i’s distance in-
creases, so does i’s cost. So the positive coef�cient on own
distance is consistent with the model of competitive bidding
in section II. Note that the coef�cient on CAPi,t is also
positive and signi�cant. As �rm i’s backlog increases, all
else held constant, the option value of free capacity will
increase because once i becomes completely capacity-
constrained, �rm i will no longer have a chance to bid on
future projects. The coef�cient on CONi,t is negative, indi-
cating that if �rm i has more prior experience in the state,
�rm i will tend to bid more aggressively.

Our reduced-form bid function also produces results that
are consistent with the strategic interactions implied by the
asymmetric auction model. As the distance of �rm j Þ i

increases or as the capacity utilization of �rm j Þ i

increases, competition will soften and �rm i will raise its
bid. However, the reaction to MAXPi,t is not signi�cant at
conventional levels.

C. Testing Conditional Independence

In this section, we test the conditional independence
assumption A1 in section IV. We use a reduced-form bid
function as in the previous subsection; however, we will

allow the model to be more �exible. If �rm i is one of the
largest 11 �rms in the industry, we use equation (28) with
�rm-varying coef�cients as its bid function. If �rm i is not
one of the largest 11 �rms in the industry, we use equation
(29) to model its bid function. We pool equations (28) and
(29) in the estimation and include auction �xed effects:19

BIDi,t

ESTt

5 b0,i 1 b1,i LDISTi,t 1 b2,i CAPi,t 1 b3,i MAXPi,t

1b4,i LMDISTi,t 1 b5 CONi,t 1 eit,
(28)

BIDi,t

ESTt

5 a0 1 a1 LDISTi,t 1 a2 CAPi,t 1 a3 MAXPi,t

1a4 LMDISTi,t 1 a5 CONi,t 1 eit.
(29)

Suppose the coef�cient of correlation between the resid-
ual to �rm i’s bid function and �rm j’s bid function, e i,t and
e j,t, is r ij. The test of conditional independence is then
equivalent to the test of the following null hypothesis:

H0 : r ij 5 0. (30)

We �rst report the number of pairwise simultaneous bids
and the correlation coef�cients (computed when the number
of simultaneous bids is no less than 4) in table 9. Simulta-
neous bids are reported in the lower part of the matrix, and the
correlation coef�cients in the upper part. We use the Fisher test
to test the hypothesis (30). Suppose the correlation coef�-
cient between two �rms’ bids is r. Let r be the correlation
coef�cient calculated from sample data (as reported in table
9); then the Fisher Z transformation is given by

Z 5
1
2

ln
1 1 r

1 2 r
. (31)

Let n be the number of samples; then the distribution of Z

is approximately normal with

mZ 5
1
2

ln
1 1 r

1 2 r
and sZ 5

1

Î n23
. (32)

Hence z 5 (Z 2 mZ)=n23 has approximately the stan-
dard normal distribution. In our case, under the null hypoth-
esis, r 5 0, mZ 5 0. The test statistic is Z=n23 for each
pair of �rms whenever n . 3. The results are reported in
table 10.

Among all 23 pairs which have at least four simultaneous
bids, the null hypothesis cannot be rejected except for four
pairs of �rms at 5% signi�cance level. These four pairs are
(�rm 1, �rm 2), (�rm 2, �rm 4), (�rm 5, �rm 14), and (�rm
6, �rm 7). However, of these pairs, only the pair (�rm 2,

19 Note that in equation (28) we force the coef�cient on concentration to
be equal for all �rms in our sample. This is because there was not
suf�cient variation in concentration within a single �rm to identify a
�rm-speci�c parameter for this coef�cient.

TABLE 8.—REDUCED-FORM BID FUNCTION

Variable OLS

C (constant) 0.6809
(5.95)

LDISTi ,t (own distance) 0.0404
(3.45)

CAPi ,t (own used capacity) 0.1677
(8.51)

MAXPi,t (maximal free capacity among rivals) 0.0255
(0.713)

LMDISTi,t (minimal distance among rivals) 0.0240
(1.81)

CONi ,t (job concentration) 20.0590
(21.866)

Sample size 450
R

2 0.8480

The regression also includes a �xed effect for each project t and one for each of the largest 11 �rms
in the market.
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Note that auctions fixed effects are used here. It is worth thinking about whether this makes

sense, given that the fixed effects will grow with the asymptotic. Depending on what is done with

a regression like this, you need to be mindful of the incidental parameters problem.
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The idea is to run an F-test testing the null of βj = βk for the 11 main firms. The test statistic

is

F =
(SSRc − SSRu)/n

SSRu/(T −m)

T is the number of Obs = 450, and m the number of regressors in the unconstrained model and

n is the number of constraints. c is the constrained model (29) and u is the unconstrained model

(28). The implementation looks at the whole set of data and also those pairs that compete against

each other in at least 4 auctions.

�rm 4) bid against each other more than a handful of times.
The pairs (�rm 1, �rm 2), (�rm 5, �rm 14), and (�rm 6, �rm
7) bid against each other on average no more than two or
three times a year in the data set.

D. Test for Exchangeability

In this section we use our regression model (28) and (29)
to test whether the empirical distribution of bids is ex-
changeable. Exchangeability implies that capacities and
distances should enter the �rm’s bidvalue function in a
“symmetric” way. Formally, in the reduced-form bid func-
tion, let bi1, b i2, b i3, b i4 be the coef�cients of LDIST1, CAP1,
MAXP, LMDIST for �rm i, one of the largest 11 �rms. Then
exchangeability is equivalent to the following hypothesis:

H0 : b ik 5 b jk for all i, j, i Þ j, and for all k 5 1, . . . , 4.

(33)

We use the F-test to test for exchangeability. Let SSRU and
SSRC be the sums of squared errors in the unconstrained and
constrained models, respectively. Also let T be the number
of observations (T 5 450 in our data set), m be the number
of regressors, and n be the number of constraints implied by
H0. Then the statistic

F 5
~SSRC 2 SSRU!/n

SSRU/~T 2 m!
(34)

has an F-distribution with parameters (n, T 2 m) under the
null hypothesis. Note that the F-test is also a variation of the
quasi-likelihood-ratio (QLR) test on nonlinear two- and
three-stage least squares.

We conduct two tests of exchangeability in this subsec-
tion. The �rst set is to test exchangeability for the whole
market, that is, the constrained regression that pools all the
11 main �rms together. The second set is to test the ex-
changeability on a pairwise basis, that is, the constrained
regression pools two of the main �rms together at each test
(hence the number of constraints is 4). That is, we test
whether empirically exchangeability holds on a pairwise
basis for the �rms in our data set. We perform this set of
tests for each pair of �rms with at least four simultaneous
bids. Table 11 summarizes the test results. It shows that for

TABLE 9.—SIMULTANEOUS BIDS AND COEFFICIENTS OF CORRELATION

Firm 1 2 3 4 5 6 7 8 11 14 20

1 2.744
2 15 2.5897 2.5247 2.1512 .1330 2.3010 .0909 .4260 .1304
3 0 9 2.6374 .2439 2.2345
4 0 67 4 2.1910 2.3197
5 0 76 8 63 2.3365 .5742 .8854 2.6963 .3588
6 1 17 3 3 8 2.7850 .2327
7 2 9 3 0 3 7 2.2711
8 2 12 3 2 5 12 6

11 1 2 7 0 4 0 0 0
14 0 9 0 8 10 0 0 0 0 .5768
20 0 5 1 2 5 1 1 1 0 6

TABLE 10.—FISHER TEST FOR CONDITIONAL INDEPENDENCE

Firms n r z Firms n r z

(1, 2) 15 2.744 23.3234 (4, 5) 63 2.1910 21.4979
(2, 3) 9 2.5897 21.6588 (4, 14) 8 2.3197 20.7408
(2, 4) 67 2.5247 24.6624 (5, 6) 8 2.3365 20.7829
(2, 5) 76 2.1512 21.3018 (5, 8) 5 .5742 0.9246
(2, 6) 17 .1330 0.5006 (5, 11) 4 .8854 1.4002
(2, 7) 9 2.3010 20.7609 (5, 14) 10 2.6963 22.2756
(2, 8) 12 .0909 0.2734 (5, 20) 5 .3588 0.5310
(2, 14) 9 .4260 1.1145 (6, 7) 7 2.7850 22.1165
(2, 20) 5 .1304 0.1855 (6, 8) 12 .2327 0.7111
(3, 4) 4 2.6374 20.7538 (7, 8) 6 2.2711 20.4816
(3, 5) 8 .2439 0.5566 (14, 20) 6 .5768 1.1391
(3, 11) 7 2.2345 20.4779

TABLE 11.—EXCHANGEABILITY TEST

Firm Pair n m F-Statistics Upper Tail Area Firm Pair n m F-Statistics Upper Tail Area

(1, 2) 4 194 1.2188 .3033 (4, 5) 4 194 1.0799 .3669
(2, 3) 4 194 2.1080 .0803 (4, 14) 4 194 0.9756 .4214
(2, 4) 4 194 1.0187 .3982 (5, 6) 4 194 1.2014 .3107
(2, 5) 4 194 3.9254 .0041 (5, 8) 4 194 1.2209 .3024
(2, 6) 4 194 0.7856 .5354 (5, 11) 4 194 0.2643 .9007
(2, 7) 4 194 2.3709 .0530 (5, 14) 4 194 2.3162 .0578
(2, 8) 4 194 0.6211 .6478 (5, 20) 4 194 1.2151 .3048
(2, 14) 4 194 2.1288 .0777 (6, 7) 4 194 2.2728 .0619
(2, 20) 4 194 1.6844 .1541 (6, 8) 4 194 0.1123 .9781
(3, 4) 4 194 1.8656 .1170 (7, 8) 4 194 2.0983 .0815
(3, 5) 4 194 1.5582 .1860 (14, 20) 4 194 1.1022 .3560
(3, 11) 4 194 1.1202 .3474 All pooled 40 158 1.4506 .0474
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4 Athey, Levin, Seira (2011), Comparing Open and Sealed Bid

Auctions: Evidence from Timber Auctions, Quarterly Journal of

Economics 126, 207

This is a structural paper that examines the question of detection. It is worth noting from the

outset that a closely related paper is Baldwin, Laura, Robert C. Marshall and Jean-Francois Richard

(1997) Bidder Collusion at Forest Service Timber Sales, Journal of Political Economy 105(4) 657.

To see the evolution in style in the structural approach it is worth reading the two papers side by

side. That said, for time reasons I will just talk about the Athey et al paper.

The research questions: i) what is the revenue ranking of open and sealed auctions with asym-

metry between bidders? and, ii) is there evidence of non-competitive bidding? (for my taste, these

should have been two separate papers, as the composite is a bit unfocused, but that’s hardly a

reason to not like the paper)

4.1 The model

• consider a single tract as a unit of observation. Auction is either open outcry or FPSB. N

potential bidders who much pay K to enter the auction. Learn their private value and the

number of competing bidders when they enter. Number of participants conditional on entry

is n

• private values are vi ∼ Fi

• there are two types of bidder: loggers and mills (mills are bigger and have manufacturing

capacity). Indicate with subscript L and M respectively.

• The authors assume in some parts that FM stochastically dominates FL but not important

for structural part

• equilibrium is a bidding function, b, and entry probability, p, for each type of bidder

• conditional on entry, bid functions are completely standard (e.g. open v = b and fpsb, v =

b - markup)

• the entry part is a little more non-standard:

– assume that bidders enter if the expected profit > 0, that is

πi(p)−K > 0

12



where

πi(p) =
∑
n∈N

profit given participants× probability of participant mix

The following gives uniqueness:

214 QUARTERLY JOURNAL OF ECONOMICS

Unlike the sealed bid auction, the open auction is efficient: the
entrant with the highest value wins the auction.

II.C. Equilibrium Entry

We now characterize equilibrium entry. Let πτL( nL, nM) and
πτM( nL, nM) denote the expected logger and mill profit in auction
format τ ∈ {o, s} if the set of participants n includes nL loggers and
nM mills, and participants use equilibrium bid strategies. Then
bidder i’s ex ante expected profit from participating is

Πτi ( p) =
∑

n⊂N

πτi ( nL, nM)Pr [nL, nM | i enters, rivals play p−i] ,(4)

where p=( p1, . . . , pM+L) is the profile of entry probabilities, and
πτi equals πτL or πτM depending on whether i is a logger or mill.
Entering is optimal if the expected profit Πτi ( p) exceeds the entry
cost K.

A type-symmetric entry equilibrium ( pL, pM) exists for both
auction formats, but in general it need not be unique. The follow-
ing result is useful in this regard.

PROPOSITION 1. Suppose that for all nL, nM, πs
M( nL, nM + 1)>

πs
L( nL, nM). Then there is a unique type-symmetric entry equi-

librium for both auction formats. In equilibrium, either pL = 0
or pM = 1.

The uniqueness condition requires that mills have a sufficient
value advantage over loggers to outweigh the effects of facing an
additional bidder. As a matter of theory it is rather strong. In our
empirical work, however, we estimate bidder value distributions
without making any equilibrium assumptions about entry behav-
ior and then verify that the condition holds for each sale tract in
our data. Thus the calibrated version of our model always has a
unique type-symmetric entry equilibrium. In our data, we observe
logger entry in more than 85% of sales and always more potential
logger entrants than actual logger entrants, so the empirically rel-
evant equilibrium appears to be one in which each logger enters
with probability between 0 and 1.

Although we focus on the type-symmetric equilibrium, the
condition in Proposition 1 also greatly restricts the broader set of
possible entry equilibria. If the bidder value distributions lead to
this condition being satisfied (as is the case with our estimated
value distributions), then in any equilibrium where any logger
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– Note that in the structural estimation this is not assumed, but the condition on profits

can be checked to see if appropriate to impose the uniqueness in the characterization.

It’s a neat bit of theory to cut through a bunch of thorny empirical modeling issues.

The upshot is that in equilibrium, all mills enter and the loggers randomize.

• To model collusion, we assume that the mills collude and only do so in the open outcry

auctions (this follows informal industry commetry).

• Further, the mills collude perfectly and frictionlessly (c.f. Asker 2010). This means that the

highest value mill enters only. Without endogenous entry this would be fairly anodyne from

an efficiency point of view. But with endogenous entry this will affect the returns to loggers

and thus affect the loggers entry process.

• so maintained assumption is no collusion in FPSB auctions and that their may be in the open

outcry auctions.

4.2 Data

The paper uses data from CA and ID/MT (the norther forests). Lets look through the summary

stats. The reduced form part of the paper uses the fact that in the northern forests their was

randomization into auction format for a subsample of the data. For the structural part, this is not

important.

13
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4.3 Structural Analysis

The research questions can be expressed more tightly now:

1. can a calibrated version of the model capture departures from revenue equivalence

2. can we use the model to asses the extent of any departures from competitive bidding

3. what is the welfare impact of changing auction format

I will focus on the second question

The idea will be to use bid and entry data from FPSB auctions to estimate parameters for the

model. Recall the maintained assumption that the FPSB auctions are competitive.

Following that, we use the model to predict the data. For FPSB auctions this is a measure of

fit exercise. For open outcry auctions, this is a joint test of the modeling assumptions, including

competitive bidding.

4.3.1 Estimation

Estimation proceeds in two steps: first use a parametric implementation of the GPV approach to

get the value distributions. Second, use this to get profits to pop out the entry cost from the entry

data.

I threshold question to consider is why the authors wanted to use a parametric model rather

than the non-parametric modeling approach?

Let’s look at the estimation of the value distributions first. Mostly, this is about getting a model

of bids.

• The idea here is to posit a parametric model of the bid distribution, with unobserved auction

heterogeneity, and then use the first order condition, in the spirit of GPV, to pop out the

implied distribution on private information (values)

• recall that, conditional on entry, the number of bidders is known

• let bidders valuations be given by

FL(.|X,u,N)

and

FM (.|X,u,N)

18



with corresponding bid distributions being

GL(.|X,u,N, n)

and

GM (.|X,u,N, n)

X is observed auction heterogeneity and u is unobserved (to the econometrician) auction

heterogeneity.

• Lastly we need a distribution on u, the unobserved (to the econometrician) auction hetero-

geneity.

• The parametric assumptions are that Gk’s have a Weibull distribution and u has a gamma.

The Weilbull-Gamma combo turns out to make it easy to write the likelihood...

• So:

Gk(b|X,u,N, n) = 1− exp

(
−u.

(
b

λk(X,N, n)

)ρk(n))

where

log λk(X,N, n) = XβX +NβN + nβn + β0

and

log ρk(n) = nγn + γ0

• lastly, u is distributed gamma with mean zero and variance θ.

• Estimation is via MLE. The log-likelihood is in the online appendix, which I reproduce here

for reference:

19
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• Once you have the estimated bid model, it is easy to use the FOC’s a la GPV to pop out a

value distribution (conditional on a value of u). Let’s look at the results
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FIGURE I
Actual versus Estimated Density of Sealed Bid Residuals (Northern Sales and

CA Sales)
Notes. Figures show estimated and actual distribution of bid residuals from

sealed bids in Northern sales (A) and California sales (B). The bid residual for
bid i in auction t is defined as εit = bit/ exp( XtβX + NtβN ), using the estimated
b’s. The plotted distribution of bid residuals is smoothed using a kernel. Esti-
mated bid residuals are those predicted by the Gamma–Weibull bid distribution
model.
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FIGURE II
Estimated Value Distributions and Bid Functions for the Case of Two Loggers

and Two Mills (Northern Sales and CA Sales)
Notes. Figures show estimated value distributions and equilibrium bid func-

tions for a sale in the Northern region (A) or California (B) with average covariates,
and u = 1, assuming that two loggers and two mills participate in the auction.
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Now we turn to the estimation of the entry model. The parameter to recover is the entry cost,

K.

• From theory, all mills enter. So entry is estimated off the behavior of the loggers.

• The first thing we need is the set of potential entrants: this is taken from the set of all entrants

from the previous year.

• Next we need to write down the entry condition:

Π(X,N) =
∑
n∈N

πL(X,N, n)Pr(n|X,N, n, i ∈ n) = K(X,N)

• From the bid fuction and value distribution estimation above, we can work out πL(X,N, n),

so the only thing is to estimate the probability of the numbers of loggers turning up. WIth

rich enough data this could be done merely by counting, here however, we have to take a

slightly more parametric approach:

246 QUARTERLY JOURNAL OF ECONOMICS

Here Pr[n|X, N, i ∈ n, τ ] is the probability that n = (nL, nM) bidders
enter given that i enters.

Our estimated value distributions already provide an esti-
mate of πτL( X, N, n). We use the sealed bid data to construct an
estimate of bidder’s beliefs about opponent entry. In equilibrium,
nM = NM, whereas loggers independently randomize their entry
with identical probability ps( X, N). The distribution of logger en-
try is therefore binomial, as is the distribution of opponent entry.
In particular,

Pr[nL|X, N, i ∈ n, s] =
(

NL − 1
nL − 1

)
ps( X, N)nL−1 (1− ps( X, N) )NL−nL .

(12)

For estimation, we specify a parametric model:

(13) ps( X, N) =
exp (XαX + NαN)

1 + exp (XαX + NαN)
.

We estimate the parameter vector α by maximum likelihood using
the observed logger entry into sealed bid auctions. These
estimates are reported in Table IV.25

Putting the estimated equilibrium profit function πs
L(X, N, n)

together with the estimated probability of logger entry ps(X, N),
we use (11) to compute the predicted logger profits from a sealed
bid auction, Πs

L(X, N), as a function of the characteristics (X, N).
Then, treating each tract in our sample as an (X, N) pair, we im-
pute for each tract an entry cost K(X, N) = Πs

L(X, N). We estimate
a median entry cost of $2,870 (s.e. $325) for the Northern forests
and $5,056 (s.e. $673) for the California forests. As the costs of
surveying a tract can run to several thousand dollars, this seems
reasonably consistent with our prior beliefs about the costs of ac-
quiring information.26

25. With these estimates in hand, we can check if our assumption of that the
probability of logger entry was strictly positive even for the few tracts where we
observe zero logger entry. If this were so, we should expect the data to contain
significantly more auctions with zero logger entry than is predicted by the binomial
model. They do not.

26. As a point of comparison, we estimate that across tracts in our sample the
median expected mill profit from a sealed bid auction is roughly $45,000 gross of
entry costs. Our analysis assumes a type-symmetric entry equilibrium. A similar
analysis is possible under the assumption that potential entrants play a pure
strategy entry equilibrium. In this case, the strong asymmetry between mills and
loggers ensures a unique number of mill and logger entrants for any entry cost, and
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• Then, recover K for each auction (ie. X,N pair) by setting Π(X,N) = K(X,N)

So how does the model fit? and what can we learn about competition in the open auctions?
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step, however, provides a demanding test of the theory. We use
the model to predict the outcomes of the open auctions and com-
pare these predictions to the data. Here we are asking the model

TABLE V
ACTUAL OUTCOMES VERSUS OUTCOMES PREDICTED BY MODEL

Notes. Column (1) shows average outcomes for sale sealed bid or open sales in the region. Column (2)
shows predicted outcomes from the model for those same sales, conditional on the number of entering firms
observed in the data. Column (3) shows predicted outcomes based on the equilibrium model of entry and
bidding. All standard errors obtained by a parametric bootstrap.
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The hypothesis that the actual price and the predicted price for Northern open auctions are the

same is rejected. Whether this difference is economically important is open for debate. One thing

the authors do is disaggregate this difference a little into auctions with different entry patterns.

See below
COMPARING OPEN AND SEALED BID AUCTIONS 251

TABLE VI
ACTUAL VERSUS PREDICTED SALE PRICES BY MILL PARTICIPATION

Notes. All numbers are for sales in the Northern region. Column (1) shows average sales prices for sales
with zero, one, or two or more participating mills. Columns (2) and (3) show predicted prices for these sales
based on the estimated model.

at conventional confidence levels. An assumption of mildly coop-
erative behavior on the part of participating mills appears to pro-
vide a better match than either the competitive or fully collusive
extremes.

It is worth noting that this conclusion is not sensitive to our
assumption that the sealed bid auctions are competitive. If we as-
sumed a degree of collusion in the sealed bid auctions, we would
infer a higher distribution of bidder values from the data. This
would reinforce the finding that open auctions appear less than
perfectly competitive. A possibility is that there is collusion at a
small fraction of the sales. We should note, however, that when
we looked at the open auctions for which the predicted price is
substantially above the actual price, we did not find any obvious
pattern.

As statistical detection of collusion is known to be a difficult
problem (e.g., Bajari and Ye 2003), it is interesting to consider
more refined predictions of the collusive model. One such predic-
tion concerns the relationship between prices and the number of
participating mills. For sales with zero or one mill, the compet-
itive and collusive model yield identical predictions. Any effect
of mill collusion should appear only in sales with more than two
mills.

To explore this, we divide the sales in the Northern region
into three groups: those with zero participating mills, one
participating mill, and two or more participating mills. Table VI
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In thinking through this paper as a detection device, bear in mind that at heart what is going on

is a completely specification test, and that the model is perhaps most extreme in the assumptions

about the entry of the mills.
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